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Nuclear magnetic resonance (NMR) is nowadays largely used as valid tool in metabolomic applications.

In this study, the metabolite content of Italian and Chinese tomato paste at different concentration rates

of two production years (2007 and 2008) was investigated with the aim of building a robust geographical

differentiation statistical model. A total of 119 tomato paste samples were analyzed by 1H NMR and

multivariate data analysis tools, in particular using bidirectional orthogonal projection to latent structures-
discriminant analysis (O2PLS-DA). This technique is well-suited for noisy and correlated variables

and was recently adopted to obtain robust classification models, having a clear interpretation of the

systematic variation useful to characterize each class. In the present study, the analysis of latent

space underlying the classification model allowed us to understand the role played by the production

year on geographical discrimination. The O2PLS-DA model performed considering only tomato paste

samples of 2007 was capable of predicting the geographical origin of all analyzed samples. The effect

of the production year therefore resulted in not affecting the geographical origin discrimination.
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INTRODUCTION

Most tomato-based foodstuffs, such as sauces, ketchups,
puree, and juices, could be sold on the Italian market, such as
“Made in Italy” products. Particularly in Italy, considered a
worldwide leader in processed tomato quality, several tons of
triple-concentrated tomato paste were imported from developing
countries, mainly from China. Actually, Italian law (1) requires
only tomato sauce producers to indicate the grown origin of
tomato fruits on the label. In this context, many potential frauds
regarding the real origin of tomato products could be made, and
consequently, a growing interest from both consumers and pro-
ducers about food geographical characterization and authenticity
is increasing presently (2, 3), with the former asking for more
guarantees for what they bought, while the latter asking for better
protection of their products.

The industrial production of concentrated tomato paste in-
volves different steps, as already indicated in our previous
paper (4). After the fruits were harvested, they were washed and
treated with a hot- or cold-break process. In the first case,
tomatoes are rapidly heated to 90 �C to thermally inactivate
enzymes, such as pectin methylesterase and polygalacturonase;
this process prevents the pectin breakdown, thus generating a
high pectin content and consistency in the final product. In the
cold-break process, the temperature achieves only about 65 �C,

thus preventing enzymatic inactivation. The final product re-
sulted in this case in a better natural color, fresher tomato flavor,
and less density (5). After the seeds and peel were removed, a
multi-step heat-exchanger evaporation process was performed,
reaching different degrees of concentration: semi-concentrated
(more than 12% of dry residual), mono-concentrated (more
than 18% of dry residual), double-concentrated (more than
28% of dry residual), triple-concentrated (more than 36% of
dry residual), and up to sextuple-concentrated (more than 55%of
dry residual) (6).

It is well-known that several factors, such as environment,
climate, and soil, could influence plant metabolism and, conse-
quently, the fruit metabolic content; therefore, differences among
seasons could determine differences in fruits and processed
tomato products. As a matter of fact, many recently published
papers focused their attention on the influence of the tomato
season of harvest, sowing, variety, ripening stage, or geographical
location on the antioxidant (7,8), polyphenol, and lipoic acid (9)
composition, carotenoid content (10), or nutritional and organo-
leptic tomato characteristics (11-14). Conversely, only two
studies faced the influence of the tomato harvest year on the
metabolic content. In these latter papers, the tomato antioxi-
dant (15) and folate (16) contents were monitored by high-
performance liquid chromatography (HPLC) measurements.
No data concerning the correlation between the year of tomato
production and tomato process product geographical origin is
present in the literature thus far.
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In our preliminary study, for the first time, we focused our
attention on the geographical discrimination of triple-concen-
trated tomato paste produced in 2007, obtaining a very clear
differentiation between Italian and Chinese samples, analyzing
the water-soluble content by 1H nuclear magnetic resonance
(NMR) and multivariate statistical protocols (4). The NMR
technique, in the last few years, has demonstrated its potentiality
in food-quality and geographical determination (17), as well
as tomato characterization (18-21). The metabolite content
results were feasible with a single experiment, without any sample
derivatization, and represent a sort of fingerprint of each ana-
lyzed food matrix, reflecting soil and climate of a determined
region, cultivar characteristics, as well as particular local process
treatments; it could therefore be considered as very useful and
precious data for determining the authenticity of food products.
Keeping inmind the previous considerations about the metabolic
content that could be affected by the production years, in the
present study, we analyzed 119 samples of both Italian and
Chinese double- and triple-concentrated tomato paste produced
in 2007 and 2008 to evaluate if and how the production year could
influence the geographical discrimination. This aim was ad-
dressed using the bidirectional orthogonal projection to latent
structures (O2PLS) technique to obtain robust and clearer
classification models and to identify the relationships between
the latent space underlying these models.

MATERIALS AND METHODS

NMR Samples. A total of 119 samples of both double- and triple-
concentrated tomato paste were analyzed. Among these samples, 92 were
of known origin and produced in 2007 or 2008; these samples represented
the candidate set, upon which statistical models will be performed. The
remaining 27 samples, purchased directly onmarket during 2007 and 2008
butwithout any label indication about their production year composed the
validation set. Among candidate set samples, 55 were produced in 2007
and 28 were Italian (11 double- and 17 triple-concentrated tomato paste),
while 27 were Chinese (all triple-concentrated tomato paste); 37 were
produced in 2008 and 12 were Italian, while 25 were Chinese (all triple-
concentrated tomato paste). Samples were prepared for NMR analysis
following the previously described protocol (4); therefore, they were
subjected to lyophilization before to be dissolved into buffered deuterated
water. 1H NMR spectra were recorded on Bruker DMX 500 spectometer
(Bruker Biospin GmbH Rheinstetten, Karlsruhe, Germany) operating at
11.7T and equippedwith a 5mmreverse probewith z-gradient. All spectra
were recorded at 300 K; an exponential function was applied before
Fourier transformation, and the phase and baseline were manually
corrected with ACD/NMR software (ACD Labs, version 11, Toronto,
Ontario, Canada). Spectra were aligned for bucket integration on the
R-glucose signal at 5.12 ppm; all spectra were then reduced to integrated
regions (buckets) of equal width (0.04 ppm) over the entire spectral region,
while the residual water signal between 4.60 and 4.88 ppm and the citrate
region from 2.33 to 2.65 ppm were set to zero constant value. The citrate
signals were excluded because they could bias the results according to our
previous study (4). Complete digitalized spectrum areas were internally
normalized.

Statistical Methods. Principal component analysis (PCA) and bidi-
rectional orthogonal projection to latent structures-discriminant analysis
(O2PLS-DA) were performed with “Pareto” data pretreatment. O2PLS

is a multivariate projection method that extracts linear relationships from
twodatablocksXandYbyremoving the so-called structurednoise (22,23).
When structured noise is present in a data setX (orY ), traditional projec-
tion techniques, such as PLS regression can produce systematic variationof
X (or Y ), having a component uncorrelated to Y (or X ). O2PLS removes
this structured noise from both X and Y in a bidirectional way without
imposing a particular direction in the prediction model. As a consequence,
O2PLS decomposes the systematic variation in the X block (or Y block)
into two model parts: the predictive or parallel part, modeling the joint
X-Y correlated variation, and the orthogonal part, not related toY (orX ).
O2PLS can be used to perform discriminant analysis (DA) by introducing
suitable dummy variables. The main benefit using the O2PLS-DA
technique is the reduced model complexity (24). In the case of N classes,
the dimension of the predictive space isN- 1 and therefore the model can
be explained using only N - 1 components. The number of latent com-
ponents can be determined by cross-validation techniques, and in this
study, we used 7-fold cross-validation. In addition, a permutation test on
the Y block was performed to safely overcome casualty or overfitting into
models. When the dimension of the joint correlated space is one, useful
visualization tools, such as, for example, the S-plot, can beused tohighlight
the role played by the variables in the model or in different models (25).
The D-optimal onion design (26) was applied to select from the candidate
set both training and test sets; those were extracted using MODDE 8.0
(Umetrics, Umea, Sweden) from the observation space described by PCA
scores of 55 samples produced in 2007 and 92 samples produced in 2007
and 2008. Statistical data analysis was performed with the SIMCA-Pþ 12
(Umetrics, Umea, Sweden) program.

RESULTS AND DISCUSSION

In our preliminary study, very good results in geographical
differentiation of triple-concentrated tomato paste samples com-
ing from China and Italy were obtained (4), with all tested
samples produced with tomato fruits harvested in 2007. In the
present work, we considered both double- and triple-concen-
trated tomato paste samples covering 2007 and 2008 productions
coming frombothChina and Italy, and in this respect, a definitive
model for Italian and Chinese concentrated tomato paste geo-
graphical assessment was investigated and proposed. Because the
analyzed samples were previously lyophilized and the same
amount resuspended in equal volumes of buffered solution before
NMR analysis, the original compound concentration, present
intodouble- or triple-concentrated tomatopaste samples,was not
influenced; all samples were therefore comparable for our analy-
sis. This simple procedure will enable sample analysis of different
formulations of concentrated tomato paste. The most important
objective in thisworkwas to test asmuch as possible samples with
certain geographical origin, to build and validate the best statis-
tical model. The acquired 1H NMR spectra were subjected to
“bucketing” with 0.04 ppm size; this value allowed little signal
shift compensation that occurred, even though the best controlled
conditions were employed for NMR samples and applied to all
spectra. Citrate buckets from 2.33 to 2.65 ppm were excluded
from the data set, according to our previous considerations (4).
As already pointed out, citrate could be added for both pH
correction and bacteria growth inhibition, even though it is not
allowed by law, and for this reason, it should not be considered as
a variable.

Table 1. Confusion Matrix for 28 Concentrated Tomato Paste Samples of 2007 Constituting the Training Set, 27 Samples of 2007 Constituting the Test Set, 37
Samples of 2008, and 27 Validation Set Samplesa

training test 2008 validation

predicted C predicted I predicted C predicted I predicted C predicted I predicted C predicted I

C 14 0 13 0 23 2 2 0

I 0 14 0 14 1 11 2 23

a “I” and “C” stand for Italian and Chinese samples, respectively.
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The validity of our previous statistical model was checked
by performing O2PLS-DA on new double- and triple-
concentrated tomato paste samples harvested in 2007. Balanced
training (28 samples) and test sets (27 samples) were extracted
from the 55 samples of 2007 production by applying D-optimal
onion design on PCA scores performed by considering Italian
and Chinese samples independently. The O2PLS-DAmodel let
to a very good discrimination between Italian and Chinese
samples. A Naı̈ve Bayes (27) classifier built using the predictive
scores of the model gave a correct geographical origin predic-
tion for both training and test sets (Table 1). The related S-plot
that allows us to estimate the variable magnitude against its
reliability highlighted glucose, γ-aminobutyric acid (GABA),
and Ala as the most discriminating variables for Italian con-
centrated tomato paste samples, while fructose,Gln, and choline
were highlighted as the most discriminating variables for Chi-
nese concentrated tomato paste samples, respectively, according

to our previous results (4) (data not shown). To evaluate
whether the production year could influence the sample descrip-
tion, a pattern recognition by PCA on 92 candidate samples
(of both 2007 and 2008 productions) was performed, with the
first three PCs accounting for R2X = 74% and Q2 = 67.4%.
The first two PCs led to a clear sample differentiation accord-
ing to their geographical origin (PCA score plot in Figure 1A),
while the third latent component (R2X = 10.3%) routed a
possible sample discrimination according to the production
year for each country separately considered (PCA score plot
in Figure 1B).

To better assess year markers for Italian and Chinese concen-
trated tomato paste samples, two O2PLS-DAs were performed
with two classes (2007 and 2008 samples) for each country
individually. The O2PLS-DA model carried out on Chinese
samples resulted in one predictive and four orthogonal compo-
nents (R2Y = 95%, and Q2 = 88.7%).

Figure 1. PCA score plot performed by considering all 92 concentrated tomato paste samples of certain origin and production year: (2 and4) 2007 and 2008
Italian samples, and ([ and]) 2007 and 2008 Chinese samples, respectively. PC1, 42.2%; PC2, 21.4%; PC3, 10.3%. These first three PCs accounted for
R 2X = 74% and Q 2 = 67.4%. (A) PC1 versus PC2 and (B) PC1 versus PC3.
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This model revealed that single variables could be used to
distinguish 2007 and 2008 samples (Figure 2), thus suggesting the
presence of strong markers, such as β-glucose (buckets at 4.57,
4.53, and 4.49 ppm) and unknown compound (buckets at 4.33,
4.29, and 4.25 ppm) for 2007 Chinese samples and fructose
(buckets at 3.89, 3.77, 3.69, 3.57, and 3.45 ppm) for 2008 samples.
Interestingly, the bucket at 3.85 ppm, characterizing 2007 sam-
ples, included a residual fructose signal and an additional new
component, not yet recognized and currently under investigation.

Conversely, the use ofO2PLS-DAon Italian samples resulted
in one predictive and six orthogonal components (R2Y=97.4%,
andQ2=88.7%). This lattermodel revealed that only the combi-
nation of several variables allowed sample separation (data not
shown); consequently, it was not possible to highlight single
variables able to discriminate the production year. Anyhow, for
both Italian andChinese samples, it appeared that the effect of the
production year could be evaluated using the information con-
tained into our data set.

On the basis of these results, it was interesting to evaluate to
which extent the information about the production year could
affect the geographical discrimination. PCA scores performed on
the two previous data sets (Chinese samples of 2007 and 2008 and
Italian samples of 2007 and 2008) were used to represent the
observations space and to sample balanced training and test sets
withD-optimal onion design. These sets were characterized by 46
samples for the training set (13 of 2007 and 7 of 2008 for Italian
samples and 14 of 2007 and 12 of 2008 for Chinese samples) and
46 samples for the test set (15 of 2007 and 5 of 2008 Italian
samples and 13 of 2007 and 13 of 2008 Chinese samples). The
training set was used to build a O2PLS-DA model with two
classes (Italian and Chinese samples); this model resulted in one
predictive latent component and four orthogonal components,
with R2Y = 95.9% and Q2 = 83.5%. To assess class member-
ship, a Naı̈ve Bayes (23) classifier was built using the predictive
scores. The class was selected using the highest posterior prob-
ability value as the decision rule. Only 1 of 92 samples was
“misclassified”, thus confirming the model goodness (data not
shown). The S-plot ofFigure 3 showed themost relevant variables
affecting sample differentiation between the two classes; in
particular, Chinese samples were characterized by a higher

amount of Gln (buckets at 2.25 and 2.29 ppm), fructose (buckets
at 3.89 and 3.97 ppm), andGlu (bucket at 1.97 ppm),while Italian
samples were higher in β-glucose (buckets at 4.53, 3.73, 3.41, 3.37,
3.33, 3.29, 3.25, and 3.13 ppm), GABA (buckets at 2.17 and 1.77
ppm), and Ala (buckets at 1.37 and 1.33 ppm).

O2PLS-DA performed on only 2007 or both 2007 and 2008
concentrated tomato paste samples indicated the same discrimi-
nant metabolites for Italian and Chinese samples. This result
suggested that the two models were comparable from a qualita-
tive point of view. A deeper analysis of this O2PLS-DA model
was performed by considering the orthogonal space and the
residuals. The predictive part of the model was subtracted from
the data set, and the residual datawere analyzed byPCAanalysis.
When the first two PCs were scored (Figure 4), a clear-cut sample
differentiation according to the production year was evident. On
the other hand, the predictive part of the O2PLS-DAmodel was
not able to distinguish the production year (the p value for type I
error was equal to 0.74). In other words, information about the
production year appeared to be uncorrelated to the predictive
space useful tomodel the geographical origin. This point could be
explained in a more rigorous way by studying the relationships
between the predictive part of the models useful to distinguish the
production year, and the predictive or orthogonal part of the
models, to obtain geographical discrimination. The O2PLS
technique was thus applied to integrate these parts to quantify
the amount of their joint co-variation. Considering the subspace
spanned by the Chinese samples, the predictive block of the model
for the production year for Chinese samples seemed to be only
weakly correlated with the predictive part of the model for the
origin discrimination (less than 10%of the total variance), while its
variance was completely explained by the orthogonal part of this
model (more than 90%). The predictive part of the model for the
production year for Italian samples was conversely uncorrelated to
the predictive part of the model for the geographical discrimina-
tion, while its orthogonal part could be used to completely model
the variability produced by different production years.

On the basis of the previous results, the geographical origin of
both candidate and validation sample sets was predicted to check
the robustness of the classifier built by considering only samples

Figure 2. S-plot of O2PLS-DA performed by considering 52 Chinese
samples (2007 and 2008) of both certain origin and production year.

Figure 3. S-plot of O2PLS-DA performed by considering all 92 Chinese
and Italian concentrated tomato paste samples of certain production year
(2007 and 2008).
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produced in 2007. A correct classification for more than 95% of
all samples was obtained (Table 1).

In conclusion, this study showed how the use of NMR spec-
troscopy and multivariate analysis was well-suited in facing
geographical origin determination of concentrated tomato paste.
Initially, data analysis bymeans of an unsupervised PCAmethod
indicated the possibility to obtain information on both the
production year and geographical origin of samples. The use of
a more powerful statistical procedure, such as O2PLS-DA,
allowed us to evaluate distinctively the predictive and orthogonal
components of the model, highlighting how the sample variation
because of the production year was negligible and dwells mostly
in the orthogonal space of the geographical discriminationmodel.
Notwithstanding, some buckets/variables could contribute to
both geographical and year discrimination; the final effect of
the use of the complete 1H NMR spectra data was to make the
geographical and year effect independent of each other. The
initial O2PLS-DA performed by considering only concentrated
tomato paste samples of 2007 could therefore be applied for
geographical origin prediction of all samples.

Our results suggested the possibility of a clear differentiation
between Chinese and Italian concentrated tomato paste samples
by means of 1H NMR spectroscopy in combination with multi-
variate statistical data analysis. Interestingly, this sample differ-
entiation was feasible independently from both the concentration
rate of samples (double- and triple-concentrated tomato paste)
and the tomato production year, at least for 2007 and 2008.
Furthermore, NMR was confirmed to be a very useful tool in
food characterization and authentication; the importance of
detecting several compounds in a single experiment is crucial
for sample differentiation.
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